Jefersson A. dos Santos

I'm a Professor in Computer Science at Universidade Federal de Minas Gerais (UFMG) currently working on machine learning and computer vision applications for remote sensing and multimedia data. My research focuses particularly on developing novel deep learning approaches for tasks like semantic segmentation, object detection, and pattern recognition in aerial/satellite imagery. Throughout my career, I have published extensively in top venues like IEEE Transactions on Geoscience and Remote Sensing and IEEE Geoscience and Remote Sensing Letters. My recent work has explored data-centric machine learning approaches for Earth observation, moving beyond just model improvements to better understand how we can leverage and improve the data itself. I've also worked on applications ranging from vegetation monitoring to flooding identification using deep neural networks. I collaborate actively with researchers across multiple institutions and have helped advance the field through contributions in areas like convolutional neural networks for remote sensing, multi-context segmentation approaches, and the development of novel feature extraction techniques. My group's work aims to bridge the gap between theoretical machine learning advances and practical applications in environmental monitoring, disaster response, and other domains that can benefit from automated analysis of remote sensing imagery.

Publications

Better, Not Just More: Data-centric machine learning for Earth observation

Better, Not Just More: Data-centric machine learning for Earth observation

R. Roscher, M. Russwurm, Caroline Gevaert, Michael Kampffmeyer, J. A. dos Santos, Maria Vakalopoulou, R. Hänsch, Stine Hansen, Keiller Nogueira, Jonathan Prexl, D. Tuia

IEEE Geoscience and Remote Sensing Magazine 2023

Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs.

Anderson P Souza, B. A. Oliveira, M. L. Andrade, M. C. Starling, Alexandre H Pereira, P. Maillard, Keiller Nogueira, J. A. dos Santos, C. C. Amorim

Science of the Total Environment 2023

Water tank and swimming pool detection based on remote sensing and deep learning: Relationship with socioeconomic level and applications in dengue control

Water tank and swimming pool detection based on remote sensing and deep learning: Relationship with socioeconomic level and applications in dengue control

Higor Souza Cunha, Brenda Santana Sclauser, P. Wildemberg, E. Fernandes, J. A. dos Santos, Mariana de Oliveira Lage, C. Lorenz, G. Barbosa, J. A. Quintanilha, F. Chiaravalloti-Neto

PLoS ONE 2021

A genetic algorithm approach for image representation learning through color quantization

Érico Marco D. A. Pereira, R. Torres, J. A. dos Santos

Multimedia tools and applications 2021

Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery

L. Osco, Keiller Nogueira, Ana Paula Marques Ramos, Mayara Maezano Faita Pinheiro, Danielle Elis Garcia Furuya, W. Gonçalves, Lucio André de Castro Jorge, José Marcato Junior, J. A. dos Santos

Precision Agriculture 2021

IEEE GRSS Brazil Chapter: Status and Activities in 2019 [Chapters]

V. Liesenberg, J. Marcato, R. Feitosa, A. Gomes, J. A. dos Santos, R. L. Paes, E. Mitishita, A. Tommaselli, Fatima N. Sombra de Sombra, A. Frery

From video pornography to cancer cells: a tensor framework for spatiotemporal description

V. F. Mota, Hugo N. de Oliveira, Sérgio Scalzo, Dalton Dittz, Reginaldo J. Santos, J. A. dos Santos, A. Araújo

Multimedia tools and applications 2020

Spatio-Temporal Vegetation Pixel Classification by Using Convolutional Networks

Spatio-Temporal Vegetation Pixel Classification by Using Convolutional Networks

Keiller Nogueira, J. A. dos Santos, Nathalia Menini, Thiago S. F. Silva, L. Morellato, R. Torres

IEEE Geoscience and Remote Sensing Letters 2019

A Soft Computing Framework for Image Classification Based on Recurrence Plots

A Soft Computing Framework for Image Classification Based on Recurrence Plots

Nathalia Menini, Alexandre E. Almeida, R. Lamparelli, Guerric le Maire, J. A. dos Santos, H. Pedrini, M. Hirota, R. Torres

IEEE Geoscience and Remote Sensing Letters 2019

On the ensemble of multiscale object-based classifiers for aerial images: a comparative study

Agnaldo Aparecido Esmael, J. A. dos Santos, Ricardo da Silva Torres

Multimedia tools and applications 2018

Dynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networks

Dynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networks

Keiller Nogueira, M. Dalla Mura, J. Chanussot, W. R. Schwartz, J. A. dos Santos

IEEE Transactions on Geoscience and Remote Sensing 2018

Exploiting ConvNet Diversity for Flooding Identification

Exploiting ConvNet Diversity for Flooding Identification

Keiller Nogueira, Samuel G. Fadel, Í. C. Dourado, Rafael de O. Werneck, Javier A. V. Muñoz, O. A. B. Penatti, R. Calumby, Lin Tzy Li, J. A. dos Santos, R. Torres

IEEE Geoscience and Remote Sensing Letters 2017

Data-Driven Feature Characterization Techniques for Laser Printer Attribution

Data-Driven Feature Characterization Techniques for Laser Printer Attribution

Anselmo Ferreira, L. Bondi, L. Baroffio, Paolo Bestagini, Jiwu Huang, J. A. dos Santos, S. Tubaro, A. Rocha

IEEE Transactions on Information Forensics and Security 2017

Towards vegetation species discrimination by using data-driven descriptors

Towards vegetation species discrimination by using data-driven descriptors

Keiller Nogueira, J. A. dos Santos, Tamires Fornazari, Thiago Sanna Freire Silva, L. Morellato, R. D. S. Torres

2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS) 2016

Laser printer attribution: exploring new features and beyond.

Laser printer attribution: exploring new features and beyond.

Anselmo Castelo Branco Ferreira, L. C. Navarro, Giuliano Pinheiro, J. A. dos Santos, A. Rocha

Forensic Science International 2015

A Systematic Review on Open-Set Semantic Segmentation

I. Nunes, Camila Laranjeira, H. Oliveira, J. A. dos Santos

Social Science Research Network 2023